Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 14(4)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37420976

RESUMO

In high-aspect ratio laser drilling, many laser and optical parameters can be controlled, including the high-laser beam fluence and number of drilling process cycles. Measurement of the drilled hole depth is occasionally difficult or time consuming, especially during machining processes. This study aimed to estimate the drilled hole depth in high-aspect ratio laser drilling by using captured two-dimensional (2D) hole images. The measuring conditions included light brightness, light exposure time, and gamma value. In this study, a method for predicting the depth of a machined hole by using a deep learning methodology was devised. Adjusting the laser power and the number of processing cycles for blind hole generation and image analysis yielded optimal conditions. Furthermore, to forecast the form of the machined hole, we identified the best circumstances based on changes in the exposure duration and gamma value of the microscope, which is a 2D image measurement instrument. After extracting the data frame by detecting the contrast data of the hole by using an interferometer, the hole depth was predicted using a deep neural network with a precision of within 5 µm for a hole within 100 µm.

2.
Micromachines (Basel) ; 12(11)2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34832794

RESUMO

Eliminating dust is gaining importance as a critical requirement in the display panel manufacturing process. The pixel resolution of display panels is increasing rapidly, which means that even small dust particles on the order of a few micrometers can affect them. Conventional surface cleaning methods such as ultrasonic cleaning (USC), CO2 cleaning, and wet cleaning may not be sufficiently efficient, economical, or environment friendly. In this study, a laser shockwave cleaning (LSC) method with a 233 fs pulsed laser was developed, which is different from the laser ablation cleaning method. To minimize thermal damage to the glass substrate, the effect of the number of pulses and the gap distance between the focused laser beam and the glass substrate were studied. The optimum number of pulses and gap distance to prevent damage to the glass substrate was inferred as 500 and 20 µm, respectively. With the optimal pulse number and gap distance, cleaning efficiency was tested at a 95% removal ratio regardless of the density of the particles. The effective cleaning area was measured using the removal ratio map and compared with the theoretical value.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...